Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.702
Filtrar
1.
Sci Rep ; 14(1): 8796, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627574

RESUMO

Lung transplantation stands as a vital treatment for severe lung diseases, primarily sourcing organs from donors with brain death (BD). This research delved into the potential anti-inflammatory effects of thalidomide in rats with BD-induced lung complications. In this study twenty-four Wistar rats were divided into three groups: the control (CTR), brain death (BD) and brain death + thalidomide (TLD) groups. Post specific procedures, a 360 min monitoring period ensued. Comprehensive analyses of blood and heart-lung samples were conducted. Elevated IL-6 levels characterized both BD and TLD groups relative to the CTR (p = 0.0067 and p = 0.0137). Furthermore, TNF-α levels were notably higher in the BD group than both CTR and TLD (p = 0.0152 and p = 0.0495). Additionally, IL-1ß concentrations were significantly pronounced in both BD and TLD compared to CTR, with the BD group surpassing TLD (p = 0.0256). Immunohistochemical assessments revealed augmented NF-ĸB expression in the BD group in comparison to both CTR and TLD (p = 0.0006 and p = 0.0005). With this study we can conclude that BD induced acute pulmonary inflammation, whereas thalidomide manifested a notable capability in diminishing key inflammatory markers, indicating its prospective therapeutic significance in lung transplantation scenarios.


Assuntos
Morte Encefálica , Talidomida , Ratos , Animais , Talidomida/farmacologia , Ratos Wistar , Morte Encefálica/metabolismo , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 422-427, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660846

RESUMO

OBJECTIVE: To investigate the effects of curcumin combined with thalidomide on the proliferation and apoptosis of acute myeloid leukemia KG-1 cells, and its correlation with B-cell lymphoma-xL (Bcl-xL), signal transducer and activator of transcription 3 (STAT3). METHODS: MTT assay was used to detect the proliferation of KG-1 cells and screen the optimal combined concentration of curcumin and thalidomide. The effects of curcumin, thalidomide and their combination on the proliferation and apoptosis of KG-1 cells were analyzed by MTT method and flow cytometry, respectively. The mRNA expression levels of STAT3 and Bcl-xL in single-drug group, two-drug combination group and control group (untreated cells) were detected by real-time quantitative PCR. RESULTS: Both curcumin and thalidomide inhibited the proliferation of KG-1 cells in a concentration-dependent manner in the range of 20-100 µmol/L (r =0.657, r =0.681). The IC50 value of curcumin and thalidomide at 48 h was (42.07±0.50) µmol/L and (57.01±2.39) µmol/L, respectively. The cell proliferation inhibition rate of curcumin (40 µmol/L) + thalidomide (60 µmol/L) was (86.67±1.53)%, which was significantly higher than (51.67±1.15)% of curcumin (40 µmol/L) and (55.33±1.53)% of thalidomide (60 µmol/L) (both P < 0.05). Treated with curcumin and thalidomide alone or in combination, the apoptosis rate of KT-1 cells was (18.67±2.08)%, (21.33±2.52)%, and (46.67±1.53)%, respectively, which was significantly higher than (0.72±0.03)% of control group (all P < 0.05). The cell apoptosis rate of two-drug combination group was significantly higher than that of single-drug group (both P < 0.05). Compared with the control group, the mRNA expressions of STAT3 and Bcl-xL in single-drug group, two-drug combination group were significantly decreased (both P < 0.05). Compared with single-drug group, the mRNA expressions of STAT3 and Bcl-xL in two-drug combination group were also significantly decreased (both P < 0.05). CONCLUSION: Curcumin combined with thalidomide can synergistically down-regulate the expression of STAT3 and Bcl-xL, inhibit the proliferation of KG-1 cells, and induce apoptosis.


Assuntos
Apoptose , Proliferação de Células , Curcumina , Fator de Transcrição STAT3 , Talidomida , Curcumina/farmacologia , Talidomida/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Proteína bcl-X/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico
4.
Chem Biol Drug Des ; 103(1): e14434, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230780

RESUMO

Heaps of studies have verified the effects of thalidomide (THA) on colorectal cancer (CRC). Howbeit, the corresponding mechanism awaits illustration, which is the foothold of this study. Following the treatment of 0, 1.94, 7.75, or 19.36 µM THA, CRC cell viability, apoptosis, migration, and invasion were evaluated by methyl tetrazolium, flow cytometry, wound-healing, and transwell assays. Homeobox B7 (HOXB7) expression in CRC was analyzed and detected by bioinformatics analysis, quantitative real-time PCR or western blot. After the corresponding transfection or treatment with inhibitor of catenin-responsive transcription-3 (iCRT-3), abovementioned CRC cell biological behaviors as well as expression levels of HOXB7 and ß-catenin were evaluated. 7.75 and 19.36 µM THA dwindled CRC cell viability, migration, and invasion, and facilitated apoptosis. HOXB7 upregulation was detected in CRC cells, which promoted the viability, migration, invasion, and ß-catenin expression, and weakened the apoptosis of CRC cells. Also, HOXB7 upregulation counteracted the effects of THA on CRC cells. iCRT-3 restrained ß-catenin expression, viability, migration, and invasion, whereas promoting the apoptosis of CRC cells. In addition, iCRT-3 antagonized the effects of overexpressed HOXB7 on CRC cells. THA inhibits the migration and invasion of CRC cells, which is achieved by suppressing HOXB7-mediated activation of Wnt/ß-catenin signaling pathway.


Assuntos
Neoplasias Colorretais , Via de Sinalização Wnt , Humanos , beta Catenina/genética , Talidomida/farmacologia , Regulação para Cima , Neoplasias Colorretais/tratamento farmacológico , Movimento Celular , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
5.
Bioorg Chem ; 143: 107050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163423

RESUMO

Immunomodulatory drugs (e.g. thalidomide, lenalidomide and pomalidomide) have been proven highly successful in clinical treatment of multiple myeloma. However, systematic degradation of zinc finger transcriptional factors induced by these drugs could lead to severe systematic toxicity in patients. Previous reports of NVOC caged pomalidomide attempted to regulate its activity using UVA irradiation, but their application was limited by high cytotoxicity and low tissue penetration. Here, we reported red-shifted BODIPY caged lenalidomide and pomalidomide that enabled red-light controlled protein degradation with spatiotemporal precision.


Assuntos
Mieloma Múltiplo , Talidomida , Humanos , Talidomida/farmacologia , Talidomida/uso terapêutico , Lenalidomida/farmacologia , Proteólise , Mieloma Múltiplo/tratamento farmacológico
6.
Annu Rev Pharmacol Toxicol ; 64: 291-312, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37585660

RESUMO

Thalidomide and its derivatives are powerful cancer therapeutics that are among the best-understood molecular glue degraders (MGDs). These drugs selectively reprogram the E3 ubiquitin ligase cereblon (CRBN) to commit target proteins for degradation by the ubiquitin-proteasome system. MGDs create novel recognition interfaces on the surface of the E3 ligase that engage in induced protein-protein interactions with neosubstrates. Molecular insight into their mechanism of action opens exciting opportunities to engage a plethora of targets through a specific recognition motif, the G-loop. Our analysis shows that current CRBN-based MGDs can in principle recognize over 2,500 proteins in the human proteome that contain a G-loop. We review recent advances in tuning the specificity between CRBN and its MGD-induced neosubstrates and deduce a set of simple rules that govern these interactions. We conclude that rational MGD design efforts will enable selective degradation of many more proteins, expanding this therapeutic modality to more disease areas.


Assuntos
Talidomida , Ubiquitina-Proteína Ligases , Humanos , Talidomida/farmacologia , Talidomida/uso terapêutico , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
Nat Chem ; 16(2): 218-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110475

RESUMO

Proteolysis-targeting chimeras (PROTACs) are molecules that induce proximity between target proteins and E3 ligases triggering target protein degradation. Pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other proteins, including zinc-finger (ZF) proteins, with vital roles in health and disease. This off-target degradation hampers the therapeutic applicability of pomalidomide-based PROTACs, requiring development of PROTAC design rules that minimize off-target degradation. Here we developed a high-throughput platform that interrogates off-target degradation and found that reported pomalidomide-based PROTACs induce degradation of several ZF proteins. We generated a library of pomalidomide analogues to understand how functionalizing different positions of the phthalimide ring, hydrogen bonding, and steric and hydrophobic effects impact ZF protein degradation. Modifications of appropriate size on the C5 position reduced off-target ZF degradation, which we validated through target engagement and proteomics studies. By applying these design principles, we developed anaplastic lymphoma kinase oncoprotein-targeting PROTACs with enhanced potency and minimal off-target degradation.


Assuntos
Proteínas , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Talidomida/farmacologia
8.
Sci Rep ; 13(1): 22088, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086859

RESUMO

The design of cereblon-binding molecular glues (MGs) that selectively recruit a desired protein while excluding teratogenic SALL4 is an area of significant interest when designing therapeutic agents. Previous studies show that SALL4 is degraded in the presence of IKZF1 degraders pomalidomide, and to a lesser extent by CC-220. To expand our understanding of the molecular basis for the interaction of SALL4 with cereblon, we performed biophysical and structural studies demonstrating that SALL4 zinc finger domains one and two (ZF1-2) interact with cereblon (CRBN) in a unique manner. ZF1 interacts with the N-terminal domain of cereblon and ZF2 binds as expected in the C-terminal IMiD-binding domain. Both ZF1 and ZF2 contribute to the potency of the interaction of ZF1-2 with CRBN:MG complexes and the affinities of SALL4 ZF1-2 for the cereblon:CC-220 complex are less potent than for the corresponding pomalidomide complex. Structural analysis provides a rationale for understanding the reduced affinity of SALL4 for cereblon in the presence of CC-220, which engages both ZF1 and ZF2. These studies further our understanding of the molecular glue-mediated interactions of zinc finger-based proteins with cereblon and may provide structural tools for the prospective design of compounds with reduced binding and degradation of SALL4.


Assuntos
Talidomida , Dedos de Zinco , Talidomida/farmacologia , Talidomida/química , Teratógenos , Ubiquitina-Proteína Ligases/metabolismo
9.
Curr Pharm Des ; 29(34): 2721-2737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37961863

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic, nonspecific, inflammatory disease of the intestine with an unknown cause. Thalidomide (THA) has been shown to be an effective drug for the treatment of UC. However, the molecular targets and mechanism of action of THA for the treatment of UC are not yet clear. OBJECTIVES: Combining network pharmacology with in vitro experiments, this study aimed to investigate the potential targets and molecular mechanisms of THA for the treatment of UC. METHODS: Firstly, relevant targets of THA against UC were obtained from public databases. Then, the top 10 hub targets and key molecular mechanisms of THA for UC were screened based on the network pharmacology approach and bioinformatics method. Finally, an in vitro cellular inflammation model was constructed using lipopolysaccharide (LPS) induced intestinal epithelial cells (NCM460) to validate the top 10 hub targets and key signaling pathways. RESULTS: A total of 121 relevant targets of THA against UC were obtained, of which the top 10 hub targets were SRC, LCK, MAPK1, HSP90AA1, EGFR, HRAS, JAK2, RAC1, STAT1, and MAP2K1. The PI3K-Akt pathway was significantly associated with THA treatment of UC. In vitro experiments revealed that THA treatment reversed the expression of HSP90AA1, EGFR, STAT1, and JAK2 differential genes. THA was able to up- regulate the mRNA expression of pro-inflammatory factor IL-10 and decrease the mRNA levels of anti-inflammatory factors IL-6, IL-1ß, and TNF-α. Furthermore, THA also exerted anti-inflammatory effects by inhibiting the activation of the PI3K/Akt pathway. CONCLUSION: THA may play a therapeutic role in UC by inhibiting the PI3K-Akt pathway. HSP90AA1, EGFR, STAT1, and JAK2 may be the most relevant potential therapeutic targets for THA in the treatment of UC.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Humanos , Colite Ulcerativa/tratamento farmacológico , Talidomida/farmacologia , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Anti-Inflamatórios , RNA Mensageiro , Receptores ErbB , Simulação de Acoplamento Molecular
10.
Chem Commun (Camb) ; 59(98): 14532-14535, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38019727

RESUMO

Optimisation of protein degraders requires balancing multiple factors including potency, cell permeability and solubility. Here we show that the fluorescence of pomalidomide can be used in high-throughput screening assays to rapidly assess cellular penetration of degrader candidates. In addition, this technique can be paired with endocytosis inhibitors to gain insight into potential mechanisms of candidates entering a target cell. A model library of pomalidomide conjugates was synthesised and evaluated using high-throughput fluorescence microscopy. This technique based on intrinsic fluorescence can be used to guide rational design of pomalidomide conjugates without the need for additional labels or tags.


Assuntos
Talidomida , Talidomida/farmacologia , Microscopia de Fluorescência
11.
Drug Des Devel Ther ; 17: 2821-2839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719363

RESUMO

Purpose: Thalidomide (Tha) can be used as a selective treatment for mild pemphigus vulgaris (PV). However, the specific mechanism of action remains unclear. Patients and Methods: PV IgG extracted from patients' serum was cocultured with HaCaT cells to construct a PV cell model, and different concentrations of Tha were used to screen the drug effect. The expression level of MYD88 was assessed in skin lesions of PV patients. Intracellular Ca2+ concentration, reactive oxygen species level, DSG3, PG, MYD88, apoptosis-related proteins (Caspase-3, Bcl-2, and Bax), NF-κB pathway-related proteins (IκBα, p-IκBα, p50, and p65), NLRP3, IFN-γ, TNF-α, IL-6, and IL-8 levels were measured. PV IgG was subcutaneously injected into C57BL/6 neonatal mice to construct the animal model. Immunofluorescence was used to detect IgG deposition in the mouse epidermis, whereas immunohistochemistry and TUNEL methods were used to detect the expression of MYD88 and NLRP3 as well as cell apoptosis level in the mouse epidermis. Results: Tha reversed the decrease in Dsg3 and PG caused by PV IgG. The expression of MyD88 increased in the patients' skin, PV cell model, and PV mouse model. The increase in MyD88 expression level in PV cell models and PV newborn mouse models was inhibited by Tha. Overexpression of MyD88 induced a decrease in the expression levels of Dsg3 and PG in Hacat cells. Overexpression of MyD88 inhibited Tha effects on Dsg3 and PG expressions and blocked Tha effects on Ca2+, apoptosis, Bax, Bcl-2, and Caspase-3 expressions, oxidative damage, and inflammatory response in HaCat cells. Tha alleviated acantholysis induced by PV IgG in model mice. Conclusion: Through MYD88, Tha attenuated apoptosis of HaCat cells, modulated NF-κB to hamper the oxidative damage and inflammatory response in the PV cell models, and alleviated acantholysis, IgG deposition, and epidermal cell apoptosis induced by PV IgG in model mice.


Assuntos
Fator 88 de Diferenciação Mieloide , Pênfigo , Animais , Humanos , Camundongos , Acantólise , Animais Recém-Nascidos , Apoptose , Proteína X Associada a bcl-2 , Caspase 3 , Células HaCaT , Imunoglobulina G , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , NF-kappa B , Inibidor de NF-kappaB alfa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Talidomida/farmacologia
12.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569792

RESUMO

Sixteen new thalidomide analogs were synthesized. The new candidates showed potent in vitro antiproliferative activities against three human cancer cell lines, namely hepatocellular carcinoma (HepG-2), prostate cancer (PC3), and breast cancer (MCF-7). It was found that compounds XII, XIIIa, XIIIb, XIIIc, XIIId, XIVa, XIVb, and XIVc showed IC50 values ranging from 2.03 to 13.39 µg/mL, exhibiting higher activities than thalidomide against all tested cancer cell lines. Compound XIIIa was the most potent candidate, with an IC50 of 2.03 ± 0.11, 2.51 ± 0.2, and 0.82 ± 0.02 µg/mL compared to 11.26 ± 0.54, 14.58 ± 0.57, and 16.87 ± 0.7 µg/mL for thalidomide against HepG-2, PC3, and MCF-7 cells, respectively. Furthermore, compound XIVc reduced the expression of NFκB P65 levels in HepG-2 cells from 278.1 pg/mL to 63.1 pg/mL compared to 110.5 pg/mL for thalidomide. Moreover, compound XIVc induced an eightfold increase in caspase-8 levels with a simultaneous decrease in TNF-α and VEGF levels in HepG-2 cells. Additionally, compound XIVc induced apoptosis and cell cycle arrest. Our results reveal that the new candidates are potential anticancer candidates, particularly XIIIa and XIVc. Consequently, they should be considered for further evaluation for the development of new anticancer drugs.


Assuntos
Antineoplásicos , Talidomida , Masculino , Humanos , Talidomida/farmacologia , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Quinazolinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Adjuvantes Imunológicos/farmacologia , Células MCF-7 , Fatores Imunológicos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Apoptose , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
13.
Front Immunol ; 14: 1220165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426650

RESUMO

Nausea and vomiting (CINV) are distressful and widespread side effects of chemotherapy, and additional efficient regimens to alleviate CINV are urgently needed. In the present study, colorectal cancer (CRC) mice model induced by Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) was employed to evaluate the cancer suppression and CINV amelioration effect of the combination of thalidomide (THD) and Clostridium butyricum. Our results suggested that the combination of THD and C. butyricum abundantly enhanced the anticancer effect of cisplatin via activating the caspase-3 apoptosis pathway, and also ameliorated CINV via inhibiting the neurotransmitter (e.g., 5-HT and tachykinin 1) and its receptor (e.g., 5-HT3R and NK-1R) in brain and colon. Additionally, the combination of THD and C. butyricum reversed the gut dysbacteriosis in CRC mice by increasing the abundance of Clostridium, Lactobacillus, Bifidobacterium, and Ruminococcus at the genus level, and also led to increased expression of occludin and Trek1 in the colon, while decreased expression of TLR4, MyD88, NF-κB, and HDAC1, as well as the mRNA level of IL-6, IL-1ß, and TNF-α. In all, these results suggest that the combination of THD and C. butyricum had good efficacy in enhancing cancer treatments and ameliorating CINV, which thus provides a more effective strategy for the treatment of CRC.


Assuntos
Antineoplásicos , Clostridium butyricum , Microbioma Gastrointestinal , Camundongos , Animais , Clostridium butyricum/fisiologia , Talidomida/farmacologia , Talidomida/uso terapêutico , Serotonina , Náusea , Vômito , Antineoplásicos/farmacologia
14.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511270

RESUMO

Several molecular mechanisms of thalidomide embryopathy (TE) have been investigated, from anti-angiogenesis to oxidative stress to cereblon binding. Recently, it was discovered that thalidomide and its analogs, named immunomodulatory drugs (IMiDs), induced the degradation of C2H2 transcription factors (TFs). This mechanism might impact the strict transcriptional regulation of the developing embryo. Hence, this study aims to evaluate the TFs altered by IMiDs, prioritizing the ones associated with embryogenesis through transcriptome and systems biology-allied analyses. This study comprises only the experimental data accessed through bioinformatics databases. First, proteins and genes reported in the literature as altered/affected by the IMiDs were annotated. A protein systems biology network was evaluated. TFs beta-catenin (CTNNB1) and SP1 play more central roles: beta-catenin is an essential protein in the network, while SP1 is a putative C2H2 candidate for IMiD-induced degradation. Separately, the differential expressions of the annotated genes were analyzed through 23 publicly available transcriptomes, presenting 8624 differentially expressed genes (2947 in two or more datasets). Seventeen C2H2 TFs were identified as related to embryonic development but not studied for IMiD exposure; these TFs are potential IMiDs degradation neosubstrates. This is the first study to suggest an integration of IMiD molecular mechanisms through C2H2 TF degradation.


Assuntos
Mieloma Múltiplo , Talidomida , Humanos , Talidomida/farmacologia , Agentes de Imunomodulação , beta Catenina/genética , beta Catenina/metabolismo , Fatores de Transcrição/metabolismo , Biologia de Sistemas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Ubiquitina-Proteína Ligases/metabolismo , Mieloma Múltiplo/metabolismo
15.
Small ; 19(44): e2302525, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415558

RESUMO

Dysfunctional transcription factors that activate abnormal expressions of specific proteins are often associated with the progression of various diseases. Despite being attractive drug targets, the lack of druggable sites has dramatically hindered their drug development. The emergence of proteolysis targeting chimeras (PROTACs) has revitalized the drug development of many conventional hard-to-drug protein targets. Here, the use of a palindromic double-strand DNA thalidomide conjugate (PASTE) to selectively bind and induce proteolysis of targeted activated transcription factor (PROTAF) is reported. The selective proteolysis of the dimerized phosphorylated receptor-regulated Smad2/3 and inhibition of the canonical Smad pathway validates PASTE-mediated PROTAF. Further aptamer-guided active delivery of PASTE and near-infrared light-triggered PROTAF are demonstrated. Great potential in using PASTE for the selective degradation of the activated transcription factor is seen, providing a powerful tool for studying signaling pathways and developing precision medicines.


Assuntos
Talidomida , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Talidomida/farmacologia , Proteólise , Regulação da Expressão Gênica , DNA/metabolismo , Fator de Crescimento Transformador beta/metabolismo
16.
World J Urol ; 41(9): 2375-2380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37470811

RESUMO

PURPOSE: To understand the effect of Nitazoxanide (NTZ), Rapamycin, Thalidomide, alone and in combination with BCG on bladder cancer (BC) histopathology and programmed death-ligand 1 (PD-L1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA4) expression. METHODS: Female Fisher-344 rats underwent intravesical N-methyl-N-nitrosourea (MNU) followed by weekly intravesical treatment with saline (controls, n = 10), BCG (n = 10), NTZ (n = 8), BCG plus NTZ (n = 8), Rapamycin (n = 10) BCG plus Rapamycin (n = 10), Thalidomide (n = 10), and BCG plus Thalidomide (n = 10), and euthanized after 8 weeks and their bladders were investigated for BC and PD-L1 and CTLA4 expression. RESULTS: Rapamicyn alone and in combination with BCG had the lowest number of bladder neoplasias in the histopathology exam (1/10). Neoplastic lesions were found in 4/10 BCG recipients, 5/10 Thalidomide recipients, 4/10 Thalidomide plus BCG recipients, 5/8 NTZ and 3/8 NTZ plus BCG recipients. Adding NTZ to BCG increased the expression of PD-L1 and adding Rapamycin or Thalidomide decreased PD-L1 and CTLA4 expression compared to BCG alone. Rapamycin alone significantly increased CTLA4 and slightly increased PD-L1 expression but its combination with BCG significantly decreased both markers. Thalidomide had a similar effect; however, it was only slightly different from the control and BCG alone groups. CONCLUSION: Intravesical BCG combination treatment seems to effectively prevent BC development in an immunecompetent clinically relevant animal model, introducing Thalidomide, Nitazoxanide, and specially Rapamycin as candidates in the intravesical immunotherapy advancement. Our study contributes in understanding the mechanism of cancer immunotherapy.


Assuntos
Talidomida , Neoplasias da Bexiga Urinária , Ratos , Feminino , Animais , Talidomida/farmacologia , Talidomida/uso terapêutico , Vacina BCG/uso terapêutico , Antígeno B7-H1 , Antígeno CTLA-4 , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Neoplasias da Bexiga Urinária/patologia , Administração Intravesical , Adjuvantes Imunológicos/uso terapêutico
17.
Arch Pharm (Weinheim) ; 356(9): e2300097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37379240

RESUMO

Eleven novel benzoxazole/benzothiazole-based thalidomide analogs were designed and synthesized to obtain new effective antitumor immunomodulatory agents. The synthesized compounds were evaluated for their cytotoxic activities against HepG-2, HCT-116, PC3, and MCF-7 cells. Generally, the open analogs with semicarbazide and thiosemicarbazide moieties (10, 13a-c, 14, and 17a,b) exhibited higher cytotoxic activities than derivatives with closed glutarimide moiety (8a-d). In particular, compound 13a (IC50 = 6.14, 5.79, 10.26, and 4.71 µM against HepG-2, HCT-116, PC3, and MCF-7, respectively) and 14 (IC50 = 7.93, 8.23, 12.37, and 5.43 µM, respectively) exhibited the highest anticancer activities against the four tested cell lines. The most active compounds 13a and 14 were further evaluated for their in vitro immunomodulatory activities on tumor necrosis factor-alpha (TNF-α), caspase-8 (CASP8), vascular endothelial growth factor (VEGF), and nuclear factor kappa-B p65 (NF-κB p65) in HCT-116 cells. Compounds 13a and 14 showed a remarkable and significant reduction in TNF-α. Furthermore, they showed significant elevation in CASP8 levels. Also, they significantly inhibited VEGF. In addition, compound 13a showed significant decreases in the level of NF-κB p65 while compound 14 demonstrated an insignificant decrease with respect to thalidomide. Moreover, our derivatives exhibited good in silico absorption, distribution, metabolism, elimination, toxicity (ADMET) profiles.


Assuntos
Antineoplásicos , Agentes de Imunomodulação , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Talidomida/farmacologia , Benzoxazóis/farmacologia , NF-kappa B , Fator de Necrose Tumoral alfa , Proliferação de Células , Células MCF-7 , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Desenho de Fármacos
18.
Future Med Chem ; 15(8): 661-677, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37125606

RESUMO

Aim: Thalidomide, a once notorious sedative, is now clinically used as an antitumor agent. We aimed to use it as a lead compound for designing pyrimidine-phthalimide hybrids. Materials & methods: Nucleophilic substitution reaction of thalidomide analog 4 with primary and/or secondary aliphatic amines afforded pyrimidine-phthalimide hybrids 5a-g, 6 and 7a-d. Results & conclusion: Compound 7c showed high antiproliferative activity against four cell lines: HepG-2 (IC50: 7.86 ± 0.5 µM), MCF-7 (IC50: 2.77 ± 0.1 µM), HCT-116 (IC50: 5.73 ± 0.4 µM) and PC-3 (IC50: 8.32 ± 0.5 µM), with selective cytotoxicity for WI-38 (IC50: 43.2 ± 2.56 µM). 7c arrested MCF-7 cells at S phase of the cell cycle and increased the total apoptotic cells by 50-fold. 7c inhibited VEGFR2 in vitro (IC50: 0.130 ± 0.02 µM). 7c was capable of binding at the VEGFR2 binding site, forming hydrogen bond interactions with Asp1046 and Glu885 in a similar way to sorafenib.


Assuntos
Antineoplásicos , Talidomida , Humanos , Relação Estrutura-Atividade , Proliferação de Células , Talidomida/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Pirimidinas/farmacologia , Pirimidinas/química , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga
19.
Biomolecules ; 13(5)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37238617

RESUMO

The immunomodulatory imide drug (IMiD) class, which includes the founding drug member thalidomide and later generation drugs, lenalidomide and pomalidomide, has dramatically improved the clinical treatment of specific cancers, such as multiple myeloma, and it combines potent anticancer and anti-inflammatory actions. These actions, in large part, are mediated by IMiD binding to the human protein cereblon that forms a critical component of the E3 ubiquitin ligase complex. This complex ubiquitinates and thereby regulates the levels of multiple endogenous proteins. However, IMiD-cereblon binding modifies cereblon's normal targeted protein degradation towards a new set of neosubstrates that underlies the favorable pharmacological action of classical IMiDs, but also their adverse actions-in particular, their teratogenicity. The ability of classical IMiDs to reduce the synthesis of key proinflammatory cytokines, especially TNF-α levels, makes them potentially valuable to reposition as drugs to mitigate inflammatory-associated conditions and, particularly, neurological disorders driven by an excessive neuroinflammatory element, as occurs in traumatic brain injury, Alzheimer's and Parkinson's diseases, and ischemic stroke. The teratogenic and anticancer actions of classical IMiDs are substantial liabilities for effective drugs in these disorders and can theoretically be dialed out of the drug class. We review a select series of novel IMiDs designed to avoid binding with human cereblon and/or evade degradation of downstream neosubstrates considered to underpin the adverse actions of thalidomide-like drugs. These novel non-classical IMiDs hold potential as new medications for erythema nodosum leprosum (ENL), a painful inflammatory skin condition associated with Hansen's disease for which thalidomide remains widely used, and, in particular, as a new treatment strategy for neurodegenerative disorders in which neuroinflammation is a key component.


Assuntos
Mieloma Múltiplo , Doenças Neurodegenerativas , Humanos , Talidomida/farmacologia , Talidomida/uso terapêutico , Agentes de Imunomodulação , Doenças Neuroinflamatórias , Mieloma Múltiplo/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
20.
Bioorg Chem ; 138: 106608, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37207596

RESUMO

Here, we rationally designed a human neutrophil elastase (HNE) inhibitors 4a-4f derived from thalidomide. The HNE inhibition assay showed that synthesized compounds 4a, 4b, 4e and 4f demonstrated strong HNE inhibiton properties with IC50 values of 21.78-42.30 nM. Compounds 4a, 4c, 4d and 4f showed a competitive mode of action. The most potent compound 4f shows almost the same HNE inhibition as sivelestat. The molecular docking analysis revealed that the strongest interactions occur between the azetidine-2,4-dione group and the following three aminoacids: Ser195, Arg217 and His57. A high correlation between the binding energies and the experimentally determined IC50 values was also demonstrated. The study of antiproliferative activity against human T47D (breast carcinoma), RPMI 8226 (multiple myeloma), and A549 (non-small-cell lung carcinoma) revealed that designed compounds were more active compared to thalidomide, pomalidomide and lenalidomide used as the standard drugs. Additionally, the most active compound 4f derived from lenalidomide induces cell cycle arrest at the G2/M phase and apoptosis in T47D cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/farmacologia , Simulação de Acoplamento Molecular , Lenalidomida/farmacologia , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA